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Spinodal decomposition and pattern formation near 
surfaces 
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Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge 
CB3 OHE. UK 

Received 13 July 1990 

Abstract .  The effects of temperature gradients and boundary conditions at the 
surface of a system separating into two phases via spinodal decomposition are studied 
numerically in one and two dimensions. For suitable cooling rates and thermal noise 
strengths, an off-critical system cooled from an external surface is found to separate 
by the formation of alternate layers of the two phases near the surface, a very different 
structure to that formed in the bulk. A similar pattern is found to be generated by a 
boundary condition associated with a surface free energy. An approximate solution 
is derived for the evolution of the boundary pattem in this case, allowing an estimate 
to be made of how f a r  the pattern will propagate into the bulk. 

1. Introduction 

This paper is concerned with the influence of boundary conditions and temperature 
gradients a t  a surface on the structure formed near the surface and the cross-over to  
the bulk structure in a system undergoing rapid phase separation. We discuss this 
within the framework of the Ginzburg-Landau theory of phase separation for systems 
in which the order parameter is a conserved quantity, such as the local concentration 
of one of the components in a binary alloy or polymer blend. 

Typically, the phase separation is induced by quenching the system from a homo- 
geneous, thermal equilibrium state to  a non-equilibrium state below a critical temper- 
ature, T,. This will evolve towards a new and inhomogeneous equilibrium consisting of 
two coexisting phases, characterized by different values of the order parameter. In the 
bulk, homogeneity is destroyed by the growth of fluctuations in the order parameter. 
However, the surface itself is a major inhomogeneity already present and may nucleate 
a quite different pattern of decomposition. 

A loose distinction can be made between two types of instability characterizing 
the early stages of phase separation, depending on whether the system is quenched to  
a metastable or an unstable state (figure 1). A metastable state decays by the ther- 
mally activated formation and growth of droplets of the minority phase. An unstable 
state decays by the growth of long-wavelength fluctuations (spinodal decomposition), 
leading to  a characteristic interconnected structure which coarsens with time. 

The  growth of this spinodal structure from thermal fluctuations in bulk systems 
following an instantaneous quench from a one-phase state has been studied extensively 
[l]. In section 2 we describe a commonly used model and modify it to  represent the 
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Figure 1. Phase diagram for a system which separates into two coexisting phases 
below a critical temperature, T,. Points above the coexistence curve (full curve) 
represent stable, single phase states. States below the classid spinodal curve (dot- 
ted curve) are unstable; those between the spinodal and the coexistence curve are 
metastable. 

more realistic situation in which the system is cooled from the outside. Numerical 
methods for this model are discussed and results presented in sections 3 and 4.  We also 
consider the effects of surface free energy and compare linear analytic and numerical 
results for pattern propagation following an instantaneous quench. 

2. The model 

The model of spinodal decomposition used here is that developed by Cahn and Hilliard 
[2] and Cook [3]. This is a phenomenological equation for the evolution of the order 
parameter, $ ( T ,  t ) ,  which, being conserved, obeys a continuity equation 

A linear relation is assumed between the flux, j, and the gradient of the local chemical 
potential 

j ( T , t )  = - M V p ( r , t )  (2) 
where M is the mobility, assumed to be constant. The chemical potential, p ,  is given 
by the functional derivative of the free energy 

which is taken to  have the Ginzburg-Landau form 
c 

The gradient term in equation (4) limits spatial inhomogeneities and f($), neglecting 
fluctuations, determines the equilibrium phase diagram. The parameter a can be 
thought of as a reduced temperature 

T - Tc 
a c( -. 

T c  
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For T > T,,u > 0 and f($) has only one minimum (figure 2), corresponding to a 
single equilibrium state, but for T < T, it has a double well form, the two minima 
giving the order parameters for the two coexisting phases, 

States for which f($) has negative curvature are locally unstable and the boundaries 
of this region define the classical spinodal curve, 

1 1 2  

= f (2) . 

Figure 2. Free energy density for positive and negative reduced temperatures. 

Equations (1)-(5) combine to  give the time-dependent Ginzburg-Landau equation 

Thermal fluctuations [3] are represented by the inclusion of 17, a Gaussian random 
noise term satisfying the fluctuation-dissipation theorem, in this case: 

( 7 ) ( T , t ) V ( d , t t ) )  = -2kBTMV26(T - T ’ ) 6 ( t  - t’). (10) 

In theoretical studies it is generally assumed that the entire system is quenched 
instantaneously from above to  below the critical temperature [4]. Experimentally, 
however, the system would be cooled from the outside by placing it in contact with 
a reservoir a t  the required final temperature and the phase separation would then 
begin preferentially a t  the boundary between the system and the reservoir. We model 
this quench procedure by taking the reduced temperature to  be the solution of a heat 
diffusion equation 

For a system initially a t  temperature a. > 0 placed in contact with a reservoir a t  
temperature a l  < 0 a t  t = 0,  the initial and boundary conditions for equation (11) are 
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This also raises the question of boundary conditions for equation (9). This is not a 
problem when considering an infinite system, since requiring that 11, should have a 
transform imposes sufficient conditions. For a bounded system with conserved $, one 
obvious condition is that  there should be no flux across the boundary: 

where n is normal to  the boundary. Another condition is needed to  solve equation 
(9)-we choose t o  require that the gradient of II, should vanish perpendicular to  the 
boundary: 

A generalization of this condition will be discussed later. 
Rescaling the variables 

112 

*-(!$) * 

t + -  
Ma: 

equations (9)-(11) can be put in  the dimensionless forms [5] 

( p ( T , t ) p ( T / ,  t ’ ) )  = -V%(T - T’ )6( t  - t’), 

where 

and 

D p=- 
I%lM 

It can now be seen that,  apart from scale factors, the only parameters in this model 
are the average order parameter ($o)l the noise strength ( E ) ,  the ratio of the initial and 
final temperatures (uo/lull) and p, which reflects the ratio of the thermal diffusion 
and the order parameter mobility. 

For the equilibrium properties of the system to be well approximated by mean-field 
theory, the Ginzburg criterion requires that E should be small. Note from equation 
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( 2 2 )  that  6 = 0 corresponds to  the zero-temperature limit and that E diverges near the 
critical point (a l  -+ 0) for d < 4. 

The non-linear nature of equation (19) and the coupling between the order pa- 
rameter and temperature fields precludes an analytic solution, but some insight can 
be gained by solving for small fluctuations about the average order parameter, a t  
constant temperature [2]. Introducing + ( r , t )  = $ ( r , t )  - $J~ ,  equation (19) becomes 

for small 4. This has the Fourier transform 

A linear evolution equation for the structure function, defined by 

S ( k ,  t )  = (14(kl ill2) 
can be derived from equations ( 2 0 )  and ( 2 5 ) :  

For a > 0, this has an equilibrium solution of Ornstein-Zernicke form, 

which tends to  zero a t  high temperature. 
For a = a l  below the spinodal curve, equation ( 2 7 )  can be written as 

-- as(k’ t ,  - 2k2(k,2 - k 2 ) S ( k ,  t )  + € I C 2  
at 

with k? = 1 - 3+; > 0,  which has the solution 

where the amplification factor, w ( k )  = k 2 ( k :  - I C 2 ) ,  is positive for wavenumbers less 
than k ,  and is peaked a t  k = k ,  = kc/&.  Neglecting fluctuations in the intermediate 
states ( E  = 0), linear theory thus predicts that  fluctuations in the initial state with 
wavenumbers less than k, will grow exponentially after a quench below Tc, the fastest 
growing being those with wavenumber k,,  independent of time. Short-wavelength 
fluctuations are suppressed. 

The above analysis neglects non-linear effects. Various theoretical [ 5 , 6 ]  and com- 
putational [ 7 , 8 ]  schemes have been proposed to  approximate the non-linear evolution 
of S ( k , t )  as determined by equation (19). The main conclusions to  be drawn are 
that the growth of the unstable modes slows down as equilibrium values of the or- 
der parameter are approached, and that k , ,  the wavenumber at  which the structure 
function is peaked, decreases with time-this is the coarsening mentioned earlier. The 
linearized solution, equation (30 ) ,  is only valid a t  early times, if a t  all. 
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3. Numerical technique 

Numerical solutions were sought for equation (19) using a technique based on that 
used by Petschek and Metiu [7] and Rogers et  a1 [8]. The system is represented by a 
lattice of spacing h and the time is split into discrete steps of length At.  We use the 
notation 

where T~ is a lattice point and t n  = nAt. 

tives: 
Finite-difference approximations are used for both the temporal and spatial deriva- 

the nearest-neighbour sum being defined by 

where T ~ + ~  = T ,  + T . ,  3 3  T .  a nearest-neighbour lattice vector. Equation (19) is thus 
replaced by 

where 

J t n  

The noise strength is assumed to be near enough constant over the temperature range 
of the quench. From equation (20), 

(p i (m)p>(n) )  = - cA~s , , v ’ s (T~  - T ~ ) .  (37) 

Replacing V2 by its finite-difference approximation and the Dirac delta by a product 
of Kronecker deltas, this becomes 

2d~h-’At6,, ri  = T .  3 

i, otherwise. 
(P:(m)P>(n)) = -ch-’At6,, T ~ ,  T~ nearest neighbours (38) 

In 2D, this can be realized by generating two independent Gaussian distributed 
random numbers, v(’) and v(’), at each lattice point, labelled by ( i ,  j ) ,  with covariances 

(v$’( m)vi!)( T I ) )  = cAt6abSik6j16mn (39) 
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and taking 

a t  each time step. 
Some care must be taken in the choice of h and At to  avoid spurious solutions 

of equation (35) with no analogue in the continuous equation (19). A linear stability 
analysis of equation (35) without the noise term for an instantaneous quench reveals 
that  the following stability condition is required [B]: 

We discretize the thermal diffusion equation, (21), similarly, to  give 

U;(. + 1) = Ui(.) + c u i ( " )  
nn 

with the further stability condition 

h2 
2dO 

At < -. (43) 

Equations (35) and (42) now provide a prescription for finding the order parameter 
and temperature a t  t imet  = ( n + l ) A t  from known results a t  t = nAt, At  being chosen 
to satisfy condition (41) or (43), whichever is the more restrictive. 

4. Results and discussion 

Simulations were performed on a 2D lattice of 50 x 50 sites with periodic boundary 
conditions a t  the top (y  = 50h = L )  and bottom (y  = 0) and boundary conditions at  
the left (x = 0) and right (z = L )  edges taken from equations (14) and (15): 

Initial states with an equilibrium distribution of fluctuations were prepared by "an- 
nealing' states with constant 11 = $J0 for a period at  the initial temperature, a,,. 
The system was then cooled from the left-hand edge, the boundary conditions on the 
temperature field being 

The right-hand boundary condition, equation (47), is chosen so that no effects due to  
a temperature gradient are generated there. Note that the temperature is independent 



10310 R C Ball and R L H Essery 

of y. The initial and final temperatures are chosen to be symmetric above and below 

Typical simulation results for an instantaneous quench ( p  = CO) at slightly off- 
critical composition ($, = 0.1-well within the spinodal region) with low noise ( e  = 

are presented in figures 3( a)-( c ) ,  where lattice points at which II, > II,, have been 
shaded. From an initial state with small fluctuations about $,, patches with higher 
and lower order parameters evolve, forming a characteristic weaving, interconnected 
structure which grows with time. By time t = 100 after the quench, the system has 
separated into domains in which the order parameter is close to the equilibrium values 
of &l,  with quite sharp walls between them. 

T,, U ,  = -a,. 

Figure 3. Evolution of the order parameter with time, t, in an off-critical ($0 = 0.1) 
ZD simulation with e = following an instantaneous quench at  time t = 0. ( a )  
t = 10, ( b )  t = 50, ( c )  t = 100. Lattice points at which $ > i o  are shaded as follows: 
. , $ o < $ < 0 . 5 ; 0 , 0 . 5 < $ < 0 . 8 ; 0 , $ > 0 . 8 .  

If, instead of quenching instantaneously, a slightly off-critical system is cooled 
slowly from one edge, a very different structure is formed, Results for the same initial 
state as above, slowly cooled ( p  = 10) from the left-hand edge are shown in figure 4.  
At first, a layer with II, > go forms at the cooled boundary (figure 4 ( a ) ) .  The fluctuat- 
ions in the bulk are small and disperse. As the cooling progresses, the density at the 
boundary increases and a second layer of enhanced II, appears (figure 4(b)). Later 
still, a third layer appears (figure 4( c)), and so on. It can be seen that as this layered 
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(c) 

Figure 4. Evolution of an off-critical ZD simulation cooled from the left-hand bound- 
ary with slow thermal diffusion; +O = 0.1, = 10, € = lo-’. ( a )  t = 10, ( b )  t = 50, 
( c )  t = 100. 

structure advances into the bulk, the spacing between the layers stretches slightly and 
no separation occurs ahead of the leading layer. 

The pattern of phase separation propagating from the boundary can be more 
clearly seen in the results of a ID,  deterministic simulation-since the temperature field 
is uniform in the y direction, the pattern it generates is essentially one dimensional. 
For @ = 10, the cooling is sufficiently slow that the leading edge of the pattern is 
‘stuck’ behind the temperature front (figure 5) .  Thermal fluctuations, if present, are 
suppressed ahead of the front and the boundary pattern can propagate far into the 
bulk. If the system is cooled faster, the temperature front can outrun the propagating 
pattern. This is seen for the case @ = 100 in figure 6. The pattern now reaches further 
into the system a t  any time, but a region ahead of the pattern is cooled below the 
spinodal point and thermal fluctuations would nucleate phase separation there. 

Returning to  the 2D stochastic model, figure 7 shows that a pattern still prop- 
agates from the boundary for @ = 100, but phase separation proceeds ahead of the 
pattern and there is a cross-over between the boundary pattern and standard spinodal 
decomposition in the bulk. Note that the spacing between the layers is now less than 
that for the slower quench and is in fact very close to  the most unstable wavelength 
for an instantaneous quench. 



10312 R C Ball and R L H Essery 

X X 

a, 

4 

4 G) 

a 0 5  

rr 

0 0 0  
a, 

2 I O  

9 

5 
1 
Y 

2 - 0 5  

E - 1 0  

a 
4 

0 0 I O  20 30 40 50 

X X 

Figure 5.  Order parameter (full curve) and tem- 
perature (dotted curve) in a noiseless ( c  = 0 )  ID 
simulation for the same conditions as figum 3: 
$0 = 0.1, 0 = 10. (a )  t = 10, (6) t = 50. 

Figure 6 .  Order parameter (full curve) and tem- 
perature (dotted curve) in a noiseless ( c  = 0 )  I D  
simulation with faster thermal diffusion; $0 = 
0.1, 0 = 100. ( a )  t = 10, ( b )  t = 50. 

Increasing the noise strength to t = the layers formed by slow cooling are 
roughened, but retain their integrity (figure 8( a ) ) .  For the faster cooling rate, however, 
thermally nucleated spinodal decomposition is now dominant right up to  the boundary 
and no vestige of the layered structure can be seen (figure 8 ( b ) ) .  

The generation of a pattern propagating from a cooled boundary can be understood 
by considering a flat initial state on which a temperature gradient is imposed. This 
forces an initial flux 

The system is cooled from the outside and so V u  is normal to  the boundary, pointing 
inwards. For & > 0 there is thus a flux towards the boundary, but no flux is allowed 
out and so $ increases in a layer around the boundary. Conservation requires that  1c, 
be depleted beyond this layer (figure 5 ( a ) ) .  As the temperature front advances, the 
depleted region is cooled below the spinodal point and the thermodynamic instability 
drives a flux against the gradient of $, consolidating the boundary layer and forming 
a second layer further inside the system (figure 5 ( b ) ) .  In this way, a standing wave 
is generated, the envelope of which advances into the system behind the temperature 
front. 

Our model free energy is symmetric between the high and low order parameter 
phases and so, if one phase is to  be preferentially formed at  the boundary, the initial 
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(4 
Figure 7. Evolution of an off-critical 2D simulation cooled from the left-hand bound- 
ary with faster thermal diffusion and noise; & = 0.1, @ = 100, c = ( U )  t = 10, 
j b )  t = 50, ( c )  t = 100. 

Figure 8.  Effect of increasing noise strength to c = in 2D simulations with 
$0 = 0.1. ( a )  Slow cooling (@ = 10) from the left-hand boundary at t = 100; cf figure 
4( e)-layered structure is preserved. ( b )  Faster cooling (@ = 100) from the left-hand 
boundary at  t = 100; cf figure 7( c)-layered structure is not preserved. 
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conditions must break this symmetry-$Jo must be non-zero (off-critical). The phase 
formed a t  the boundary is that which has the same sign as q0. 

The temperature gradient produced by slow cooling, the no-flux boundary condi- 
tion and the asymmetry of the initial state are crucial for the generation of the layered 
structure observed in figure 4. A no-flux boundary condition was a natural choice for 
our model, but the other necessary condition, equation (15), was chosen on an ad hoc 
basis-a more general boundary condition is discussed in the next section. 

( a )  ( b )  

Figure 9. Evolution of a critical 2D simulation cooled from the left-hand boundary 
with slow thermal diffusion; $0 = 0, p = 10, E = lo-'. ( a )  t = 50, ( b )  t = 100. 

An instantaneous quench produces qualitatively similar results whether the initial 
state is symmetric on the average ($o = 0) or slightly asymmetric, but slow cooling 
produces a different type of structure. Figure 9( a )  shows results for a symmetric initial 
state, slowly cooled from the left-hand edge. Patches of both phases now appear a t  the 
cooled boundary (figure 9( a ) ) ,  developing into concentric, semi-circular bands centred 
on the boundary (figure 9 (b ) ) .  It  should be noted that this pattern is thermally 
nucleated, whereas the layered pattern of figure 4 represents a deterministic solution 
of the model equation, in competition with thermal fluctuations. 

5 .  Surface free energy 

So far, i t  has been assumed that the surface makes no contribution to the free energy. 
We now add a surface term 

where Fbulk is the bulk free energy from equation (4) and the integral is over the 
surface of the system. The functional derivative of equation (49) gives the bulk chem- 
ical potential as before and the same Ginzburg-Landau equation, equation (19), is 
recovered, but the surface term now supplies an equilibrium boundary condition 
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We adopt this as a generalization of boundary condition (15) for the dynamics. Since 
the surface free energy may induce surface segregation even in the absence of a tem- 
perature gradient, we consider instantaneous quenches only. The early stages of phase 
separation neglecting thermal noise can be studied using the linearized evolution equa- 
tion, (24), with E = 0. For a ID semi-infinite system (0 < x < CO), this is 

a 2  a 2  -- - -- (k: + a,.) + ( ~ , t ) .  
at a x 2  

where k: = 1 - 3$~,2. The  boundary conditions a t  x = 0 are 

a4(o, t )  + a[$(O,t) + $,I = 0 ax 
and 

2 ax (e  + -&) 4(O,t) = 0 (53) 

and for a flat initial state the initial condition is 

4 ( x ,  0 )  = 0.  (54) 

The neglect of thermal fluctuations and surface segregation in the initial state corre- 
spond to  taking a very high initial temperatmure. 

Taking a Fourier cosine transform in x and a Laplace transform in t ,  the transforin 
of $ ( x , t )  is 

P o 3  P.00 

from equation (51), where 

w ( % )  = k2(kF - k 2 ) .  

Equation (56) is an integral equation for d ( k ,  s )  with solution 

(57) 

The integral in equation (58) could be evaluated, but to avoid a messy inverse Laplace 
transform we restrict our attention to small values of Q and retain the first-order term 
only: 
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Inverting the Laplace transform, 

ewt - 1 
#(k, t )  M a$ok2- 

W 

and inverting the Fourier transform, 

exp{ k2(k: - k2)t} - 1 
cos kx. 

kz - k2 

Equation (61) can be evaluated approximately, noting that the integrand is sharply 
peaked near k = k, = k c / a  and using a Gaussian approximation, t o  give 

where 

5 A = 1 + - (1 - 2) 
S k i t  8kLt 

This is compared with the results of a ID simulation in figure 10. The agreement is 
good for small (Y and 4. 

0.16' ' ' t 

01 0.06 

0 
0.06 

0.04 
0 10 20 30 40 50 

X 

Figure 10. Boundary pattem induced by surface energy effects a t  the left-hand 
boundary in I D  at time t = 20 after an instantaneous quench with $0 = 0.1, oi = 0.1 
and E = 0. Full curve from simulation, dotted curve from equation (62). 

If cy and go are both non-zero, a damped standing-wave pattern is generated, the 
envelope of which decays into the bulk. Equation (62) predicts that  wavenumber km 
is strongly selected and that the velocity a t  which the envelope advances tends to a 
constant value, ZI ---+ 4k;, a t  large times. 

This situation belongs to  a class of problems in which a pattern of well defined 
wavelength is formed behind a front propagating into a uniform, unstable state for 
which 'marginal stability' [9-111 has been suggested as a dynamical pattern selection 
mechanism. 

At the leading edge of the pattern, displacements about $o are small and the 
linearized equation, (51), will be valid. At large times and far away from the location 
of any initial perturbation, this has solutions of the form 

4 (x , t )  N exp(ikx +u(k ) t )  (64) 
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the amplification rate, w ,  being given by the linear dispersion relation, equation (57). 
Requiring Im k > 0, the envelope of this solution decays with increasing 3: and advances 
at velocity 

Rew(k) 
Imk 

l , J =  -. 

A solution exists for any front velocity, but the marginal stability hypothesis states 
that the naturally selected velocity of the front is such that slower moving fronts, 
viewed in a co-moving frame, are unstable against perturbations, while faster moving 
fronts are stable, or 

. dw( k )  
dk 

v=1- 

Equations (65) and (66) ca.n be solved simulta.neously for l , ~  and k, the wavenumber of 
the small fluctuations ahead of the front. The wavenumber for the pattern emerging 
behind the f ron t4  given by 

* Im [ikw + w(k)] k =  
V 

With w from equation (57), the marginal stability predictions for this problem are [I21 

W =  4 ( 8  3 + 2) ( d3- 1)" k: M 4.588ki 

k, M 1.083km 3( fi + 3)3/2 k' = 
8 ( J ? + 2 )  

in reasonable agreement with the approximate predictions above. 
In 2D simulations with thermal noise, a cross-over can again be seen between an 

essentially one-dimensional pattern propagating from the boundary and fully two- 
dimensional, thermally nucleated spinodal decomposition in the bulk (figure 11). 

A linear theory for the growth of thermal fluctuations in the bulk was discussed 
in section 2. Following an instantaneous quench from a flat (high-temperature) stable 
stat.e to an unstable state, equation (30) predicts that 

which can be evaluated using the same approximation as for equation (62): 

This is compared with simulation results in figure 12. A good fit is obtained for small 
4, but non-linear effects begin to be important at about C$ = 0.2. 

An estimate of how far the boundary pattern will reach into the bulk can be 
made since at  early times the competing processes of pattern propagation and ther- 
mally nucleated spinodal decomposition are described by a linear equation and can 
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(4 
Figure 11. Off-critical ($0 = 0.1) 2D simulations at time t = 100 after an instan- 
taneous quench for various strengths of the surface interaction and the noise: ( a )  
cy = 0.1, c = ( b )  cy = 0.1, E = ( e )  Q = 0.01, c = 

0.1 o'z~L-5!.!J 0.0 o 1 0  20 IO 40 

Time 

Figure 12. Growth of RMS fluctuation, (q52( t ) )1 /2 ,  for thermally nucleated spinodal 
decomposition with $0 = 0.1 and c = Full curve from linear theory (equation 
(70)), points from simulation. 

be superimposed, but when their sum reaches the non-linear regime in some region, 
whichever is larger will remain dominant in that region subsequently. Choosing a non- 
linear threshold (we take 4 = 0.2, but the results are insensitive to  the exact choice) 
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x 
\ 

0.00 0.05 0.10 0.15 0.20 

a 

Figure 13. Predicted distance from boundary for cross-over between boundary 
pattern and bulk decomposition in pattern wavelengths, X = 27r/km, plotted against 
surface interaction strength (a) for three different noise strengths (e) .  Marked points 
(a)-(.) correspond to parameters for figures ll(a)-(c). 

and comparing equation (71) with the envelope part of equation (62), a rough predic- 
tion can be made for the distance from the boundary over which the boundary pattern 
will dominate bulk decomposition. This distance, in terms of pattern wavelengths, is 
plotted against ct for various noise strengths in figure 13. The marked points (a)-(.) 
correspond to  the parameters for the simulations shown in figures 11( a ) - ( c ) .  

and ct = 0.1, the pattern is expected to extend for a little 
more than four wavelengths from the boundary. This corresponds to  figure l l ( a ) ,  in 
which four distinct dark bands (positive 4) can be seen and a fifth (four wavelengths) 
merges into the bulk pattern. Similarly, the pattern in figure l l(b),  predicted to  extend 
for about 2.5 wavelengths, shows three distinct dark bands while the next unshaded 
band (negative 4) is nearly, but not quite, complete. In figure l l ( c )  the first band 
is incomplete, the second is greatly roughened and bulk spinodal decomposition is 
dominant beyond one wavelength from t,he boundary. 

For $,, = 0.1, E = 

6. Conclusions 

We have seen how boundary conditions can dictate that one phase should be preferen- 
tially formed a t  the boundary of a system with a symmetric phase diagram undergoing 
separation into two phases, provided that the initial state is not symmetric between 
the two phases (i.e. that  it is off-critical). It is then a general property of the math- 
ematical model used that alternate layers of the two phases will be formed near the 
boundary. 

In the first case studied, a flux of one phase towards the boundary was generated 
by a temperature gradient due to  cooling of the boundary. The observation of a 
boundary pattern is favoured in systems which have an appreciable material mobility 
compared with their thermal conductivity (i.e. small p). However, hydrodynamic 
effects, neglected here, might be important. 

For the more common case in which the thermal conductivity is large compared 
with the material mobility (large p), the instantaneous quench assumption becomes a 
good approximation. However, surface energy effects are then important and we have 
shown that  these can also lead to  layered boundary patterns. 

Boundary layers, if formed, could give the surface quite different physical proper- 
ties to  the bulk and could be probed by scattering experiments. 
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